Choisir la bonne réponse en justifiant votre choix.

On s'intéresse à la durée de vie , exprimée en année, d'un appareil ménager avant la première panne. On peut modéliser cette situation par une probabilité p qui suit une loi exponentielle de paramètre $\lambda > 0$.

1) La valeur de t pour laquelle p([0, t]) = p($[t, +\infty[$) est :

a) $\frac{ln2}{r}$

b) $\frac{\lambda}{\ln 2}$

c) $\frac{\lambda}{2}$

2) D'après une étude statistique, la probabilité que l'appareil tombe en panne avant la fin de la première année est 0.18. La valeur exacte de λ est alors :

a) $\ln{(\frac{50}{41})}$

b) $\ln{(\frac{41}{50})}$

c) $\ln (\frac{82}{100})$

3) Sachant que cet appareil n'a connu aucune panne au cours de deux premières années après sa mise en service. la probabilité qu'il ne connaisse aucune panne l'année suivante est :

- a) P([1, +∞[) ,
- b) p([3, $+ \infty$ [) c) p([2, 3[)

Dans la suite on prendra $\lambda = 0.2$.

4) La probabilité que l'appareil n'ait pas eu de panne au cours des trois premières années, arrondis à 10⁻⁴ près est :

a) 0.5523

- b) 0.5488,
- c) 0.4512

5) Dix appareils neufs de ce type ont été mis en service en même temps. On désigne par X la variable aléatoire égale au nombre d'appareils qui n'ont pas de panne au cours des trois premières années. La valeur la plus proche de la probabilité de l'événement : X =4 est :

a) 0.5555

- b) 0.8022
- c) 0.1607

Exercice 2:(3points)

Ali a créé un site web. Le tableau ci-dessous présente l'évolution du nombre hebdomadaire de visiteurs de ce site au cours des huit premières semaines suivant sa création.

Rang de la semaine x _i	1	2	3	4	5	6	7	8
Nombre de visiteurs y_i	205	252	327	349	412	423	441	472

MATHEMATIQUES Synthèse 3

4ème Math Durée: 4 heures

1) a/ Représenter le nuage des points $M_i(x_i, y_i)$ dans le plan muni d'un repère orthogonal, en prenant pour unités 1 cm pour une semaine sur l'axe des abscisses et 1 cm pour 50 visiteurs sur l'axe des ordonnées.

b/ Déterminer les coordonnées du point moyen G de ce nuage de points, et le placer dans le repère précédent (on arrondira l'ordonnée du point G à l'unité près).

- 2) a/ Déterminer l'équation de la droite (D) d'ajustement affine de y en x, obtenue par la méthode des moindres carrés. Les coefficients a et b seront arrondis à l'entier le plus
 - b/ Tracer la droite (D) dans le repère précédent.
 - c/ En utilisant l'ajustement affine précédent, estimer le nombre de visiteurs lors de la

dixième semaine suivant la création du site.

- 3) En remarquant que l'augmentation du nombre de visiteurs est plus faible sur les dernières semaines, on peut penser à faire un ajustement de type « logarithmique ». Pour cela, on pose : $z = \ln(x)$.
 - a/ On donne le tableau suivant :

Rang de la semaine x_i	1	2	3	4	5	6	7	8
$z_i = \ln(x_i)$	0	0,693		1,386	1,609		1,946	2,079
Nombre de visiteurs <i>y_i</i>	205	252	327	349	412	423	441	472

Préciser les valeurs manquantes z_3 et z_6 en arrondissant les résultats obtenus à 10^{-3} près. b/ On admet que l'équation de la droite (d) d'ajustement affine de y en z, obtenue par la méthode des moindres carrés, est : y = 133z + 184.

En utilisant ce résultat, procéder à une nouvelle estimation du nombre de visiteurs lors de la dixième semaine (le résultat sera arrondi à l'unité).

c/ À l'aide de ce nouvel ajustement, déterminer le rang de la semaine au cours de laquelle le nombre prévisible de visiteurs dépassera 600.

Exercice 3:(4 points)

R = $(0, \vec{i}, \vec{j})$ est un repère orthonormé du plan.

- 1) On désigne par C_m la courbe d'équation : $m x^2 + y^2 = m$; où m est un paramètre réel.
 - a/ Déterminer, suivant les valeurs de m, la nature de la courbe C_m .
 - b/ Préciser les foyers et les sommets de $\rm C_{\rm m}$ lorsque m > 1.
- 2) Soit H l'ensemble des points M du plan d'affixe z tel que Re (z^2) = 1.
 - a/ Montrer que $H = C_{-1}$
 - b/ Tracer H.

Devoir 4ème Math 2011/2012

- 3) Soit Γ la courbe d'équation $x^2 y^2 2\sqrt{3} \times y + 2 = 0$.
 - a/ Montrer que M(z) $\in \Gamma$ si et seulement si Re [$(jz)^2$] = 1, avec j = $e^{i\frac{2\pi}{3}}$
 - b/ En déduire que Γ est l'image de H par une rotation r que l'on définira.

Exercice 4:(4 points)

- On considère dans Z x Z, l'équation (E): 5x 3y = 11.
 Montrer que (x, y) est solution de (E) si et seulement si x = 3k +1 et y = 5k 2, où k est un entier relatif.
- 2) Pour tout entier relatif k on pose d = (3k +1) ∧ (5k 2).
 a/ Montrer que d = 1 ou d = 11.
 b/ Montrer que d = 11 si et seulement si k = 7 [11]
- 3) Le plan étant munie d'un repère orthonormé $(0, \vec{i}, \vec{j})$, on désigne par Δ la droite d'équation 5x 3y = 198.

a/ Déterminer les points M de Δ dont les coordonnées (a, b) sont des entiers relatifs vérifiant a \wedge b = 18.

b/ Déterminer parmi ces points celui qui est le plus proche de O.

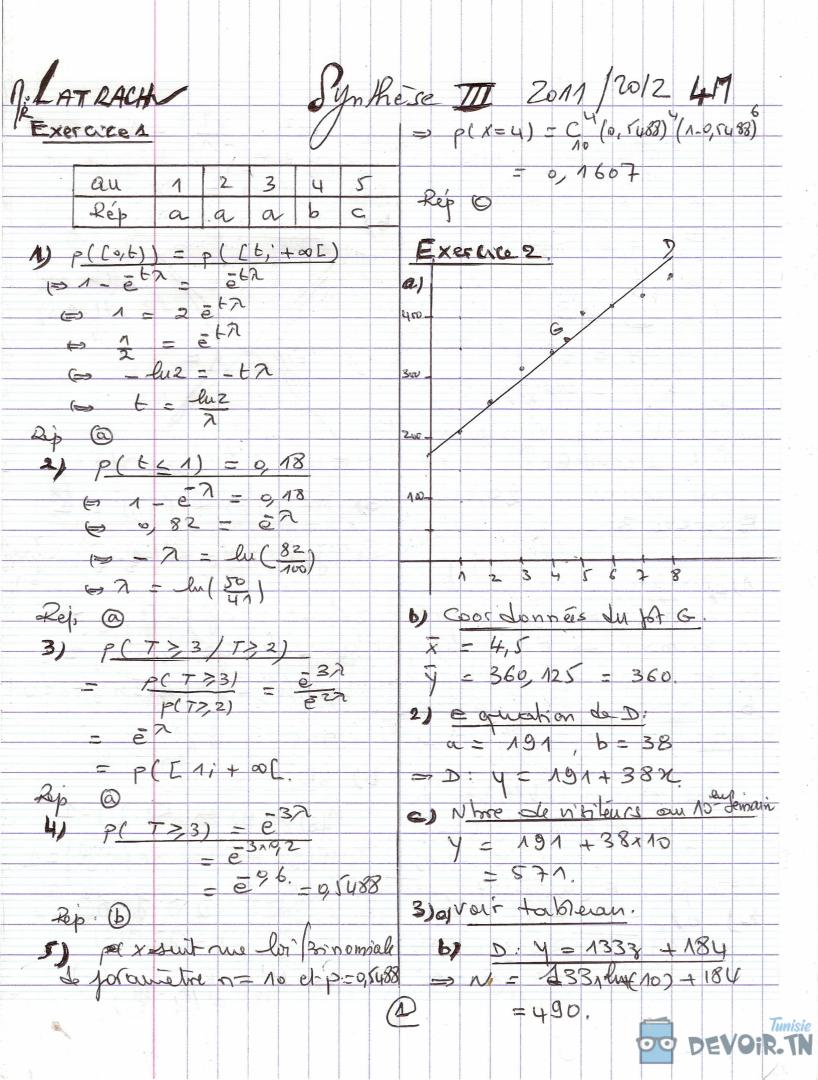
(indication?: on pourra étudier les variations de la fonction f définie par $f(x) = 34x^2 - 14x + 5$)

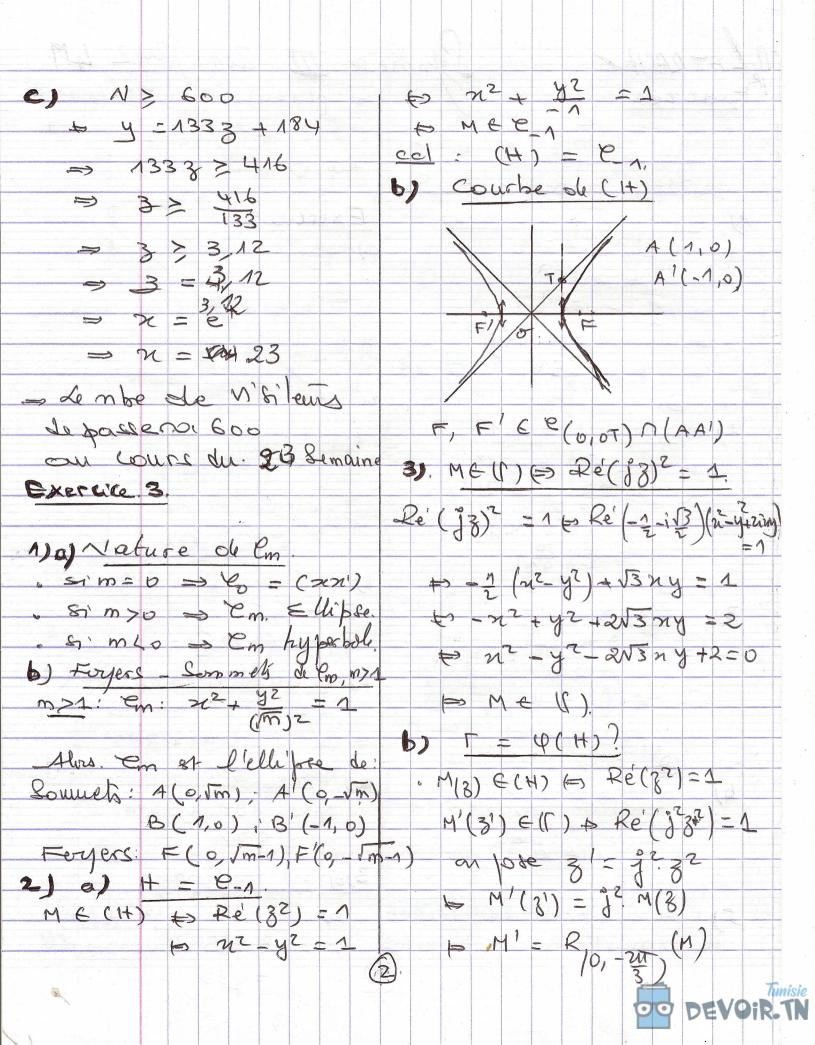
Exercice 5:(5 points)

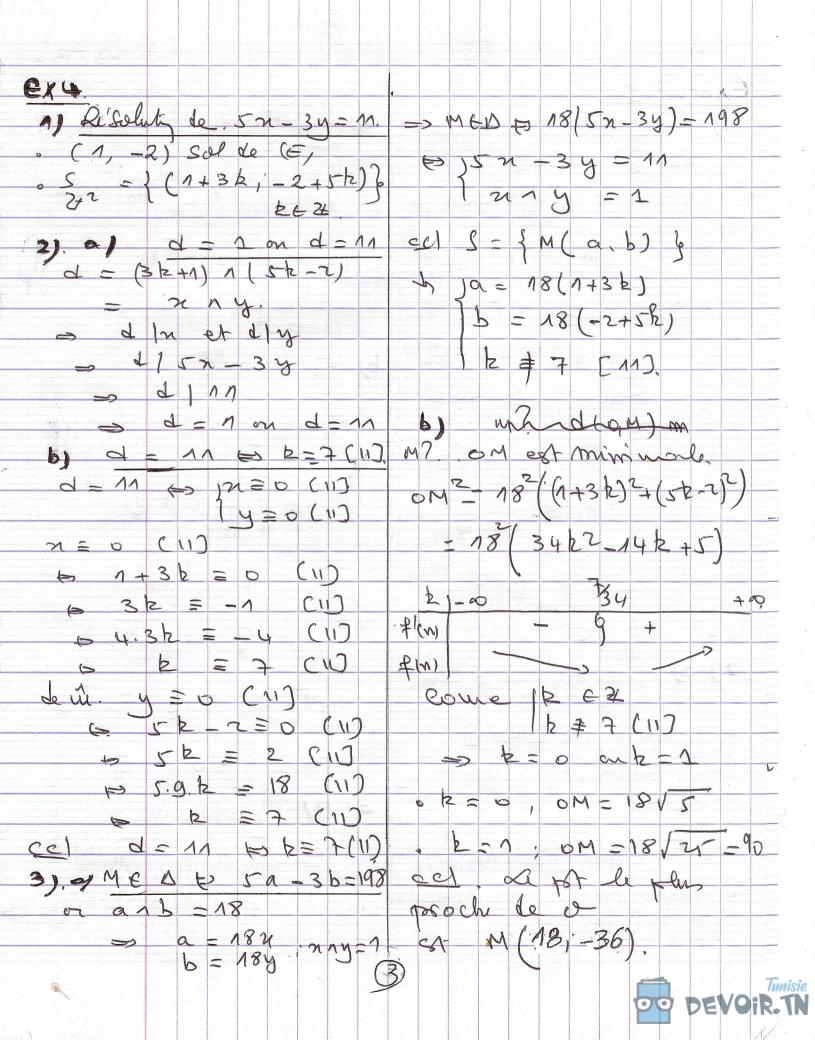
Soit $n \in \mathbb{N}$, on définit la fonction f_n sur \mathbb{R}_+ par : $\begin{cases} f_n(x) = x^{n-2}e^{\frac{-1}{x}}si \ x > 0 \\ f_n(0) = 0 \end{cases}$

On pose : $I_n = \int_0^1 f_n(t) dt$ et $F_n(x) = \int_x^1 f_n(t) dt$ pour $x \in [0, 1]$.

- 1) Montrer que f_n est continue sur IR+.
- 2) a/ Sans chercher à calculer $F_n(x)$, justifier que $\lim_{x\to 0^+} F_n(x) = I_n$. b/ Calculer $F_0(x)$ pour $x\in]0,1]$. En déduire que $:I_0=\frac{1}{e}$.
- a/ Comparer F_{n+1} (x) et F_n (x).b/ En déduire la monotonie de la suite (I_n).
- 4) a/ Montrer que pour tout $x \in]0, 1]$, $x^n F_0(x) \le F_n(x) \le F_0(x)$. b/ En déduire que pour tout $n \in IN$; $0 \le I_n \le \frac{1}{e}$ et que la suite (I_n) est convergente.
- 5) a/ Au moyen d'une intégration par parties , trouver une relation de récurrence entre $F_{n+1}(x)$ et $F_n(x)$, pour $n \in IN$ et $x \in]0, 1]$. b/ En déduire que pour $n \in IN$, $I_n + n I_{n+1} = \frac{1}{e}$. c/ Montrer que $\lim_{n \to +\infty} I_n = 0$.
- 6) a/ Montrer par récurrence que pour $n \in IN^*$, $I_1 = \frac{1}{e} \sum_{k=0}^{n-1} (-1)^k k! + (-1)^n n! I_{n+1}$. b/ Déduire le terme général de la suite (I_n) en fonction de I_1 .

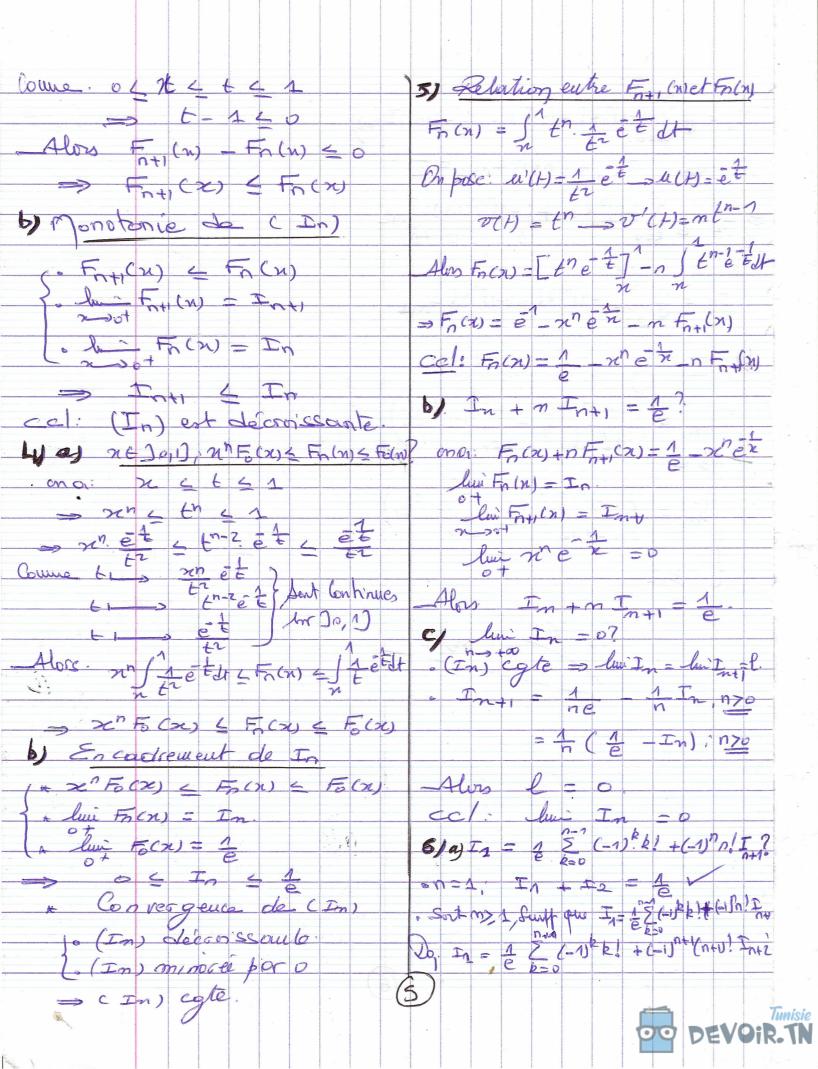






Exercices. solun From = 1) Continuité d'france G.n(x) 4 for soluit de fels Continue) n=0. $f(n)=e^{\frac{\pi}{n}}$ hun fo (n) = 0 = fo (a) (folt) lt; n>0 nso+ f(n) = h : 2" (-1) = 12 = 0 Co(lui xe > 0 = fr (0) > C enot = JAzet dt lui Fo (n) = 1 To 8t & W [0,1] Set on me fi-hu m [o] 3) al Comparaisin do Forti wet For (n)? => Fn (n) = Gn(n) - Gn(n) -> - fr (n) = Gn (1)-G(9) Fint (n) - Fin(n) = 1 En-2 = = = (t-1)d+ Cox Gr & en ot

DEVOIR. TN



In = { & (-1) b k } + (-1) n ((= - (n+1) In+2) - Cos. Int + (n+1) Int2 = @ > I1 = 1 € C-1) = 1 + C-1) + Cn+1) ! Int? In = 1 \(\frac{1}{6} \) \(\frac{1}{10} \) \(\fra b) trone general de (In) $= \prod_{n=1}^{\infty} \left(T_1 - \sum_{k=0}^{n-2} (-1)^k k! \right)$